Chemistry: Ch. 5 Worksheet:

Name:

1. Fill in the following chart.

Isotope	Symbol	Mass Number	# of Protons	# of Neutrons	#of Electrons
Calcium-42					
	³⁴ S				
		206	82		

2. Write the equation for calculating the wavelength and frequency of a photon of light.

3. Write the equation for calculating the energy of a wavelength of light knowing its frequency.

4. Which of the following represents the shortest wavelength? Show your work.

a) 3.5×10^{-6} m b) 6.3×10^{-5} cm c) 7350 nm

5. A source produces red light of wavelength 7.0 x 10^2 nm. What is this wavelength in Å? (Å is the abbreviation for angstrom, which is 10^{-10} m)

6. KTGL broadcasts at a frequency of 92.9 MHz (Megahertz). What is the wavelength for this wave?

7. What is the energy in kJ for light with wavelength 250 nm?

- 8. Excited lithium atoms emit visible light that has a frequency of 4.47 x 10^{14} s⁻¹. What is the wavelength and energy of this radiation? Predict the color of light this radiation represents.
- 9. Molybdenum metal must absorb radiation with a minimum frequency of $1.09 \times 10^{15} \text{ s}^{-1}$ before it can emit an electron from its surface via the photoelectric effect.
 - a. What is the minimum energy required to produce this effect?
 - b. What wavelength of radiation will provide a photon of this energy?

- 10. Solve the following problems
 - a. A very large sample of iron filings was estimated at 4.5 x 10^6 g, what is this in tons?
 - b. The depth of a column of water is 45.67 dm, what is this in inches?
 - c. The barometric pressure outside is $1.405 \times 10^4 \text{ g/cm}^2$. If 1 atmosphere of pressure equals 14.7 lb/in², what is this barometric pressure in atmospheres?
 - d. The diameter of a U.S. penny is 19 mm. The diameter of a copper atom, by comparison, is 1.57 Å. How many copper atoms could be arranged side by side in a straight line across the diameter of a penny?
 - e. The nuclei of atoms are very small and contain in excess of 99% of an atom's mass. Let's assume that the nucleus of a hydrogen atom is 1.0×10^{-4} Å across. Given that 1 amu = 1.66054×10^{-24} g;
 - 1. What is the density of an average hydrogen nucleus in g/cm³? You will need to find the volume of the hydrogen nucleus. Assume it is spherical
 - 2. If a drop of water (sphere with a radius of 5 mm) had the same density, what would its mass be?