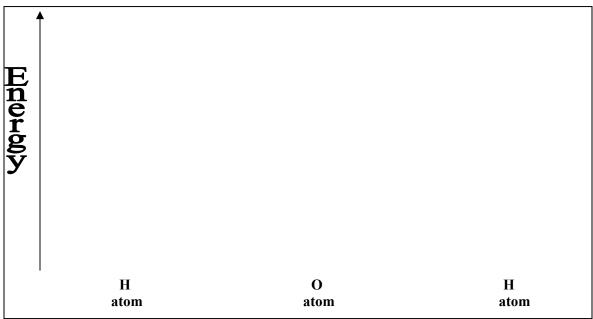
IB Chem I/Diff. Chem: Ch. 9 Quest. Hybridization & Molecular Orbital Theories Name:

Multiple Guess: Choose the best answer for the following questions. Show your work on the reverse side.

1	 In counting electron dense regions about a central atom when predicting the shape by VSEPR theory, which of the following does not count as a single region? a. lone pair of valence electrons b. a single covalent bond c. a sub-valence level electron pair d. a double covalent bond e. a triple covalent bond f. all the above count as e⁻ dense regions
2	What is the shape of the PF ₄ ⁺ ion? a. square planar b. tetrahedral c. seesaw d. trigonal pyramidal e. T-shaped f. none of the above
3	What is(are) the bond angle(s) in the tribromide ion? a. 109.5° b. 120° c. 180° d. 90° e. c & d f. b & d g. none of the above
4	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $
5	Which of the following molecules is polar? a. SbF_5 b. AsH_3 c. SF_6 d. I_2 e. none of the above
6	In general, molecules with a tetrahedral geometry have what central atom hybridization? a. sp b. sp^2 c. sp^3 d. sp^3d e. sp^3d^2
7	Which of the following choices has sp ² hybridization? a. SO ₃ b. CH_2O c. HCO_2^{-1} d. all the above e. a & b only f. none of the above
8	What type of hybrid orbital is used for bonding by Xe in XeF ₂ ? a. sp b. sp ² c. sp ³ d. sp ³ d e. sp ³ d ²
9	A triple covalent bond typically consists of a. three sigma bonds b. three pi bonds c. one sigma and two pi bonds d. two sigma and one pi bond
10	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $
11	The combination of two atomic orbitals results in the formation of molecular orbitals a. 1 b. 2 c. 3 d. 4
12	The bond order of any molecule containing equal numbers of bonding and anti-bonding electrons is a. 0 b. 1 c. 2 d. 3
13	Electrons that are distributed about the inter-nuclear axis are most likely found in which of the following a. σ_{1s} b. σ_{2p} c. π_{2p^*} d. σ_{2s^*} e. σ_{1p} f. a & b only g. a, b & e.
14	Molecular orbital theory describes the respective bond order in He_2^{+2} as a. 0 b. 0.5 c. 1 d. 1.5 e. 2 f. none of the above
15	How many electrons can an anti-bonding pi molecular orbital hold at most.a. 1b. 2c. 4d. 6e. 8f. none of the above
16	Which of the following species is paramagnetic? a. N_2 b. C_2^{-2} c. F_2 d. B_2^+ e. a & b only f. b & d only g. all the above

17. Matching


He ₂ +	a. number of electrons in πp orbitals equals the number of electrons in πp^* orbitals
Li ₂	b. bond order = 1 and no p electrons
N2	c. σ bond plus 2 π bonds and nonpolar
F_2	d. bond order = $\frac{1}{2}$
He ₂	e. unstable

18. a. Draw a molecular orbital diagram for the $\operatorname{Be_2}^{+1}$ ion

- b. Write the electron configuration for the $\operatorname{Be_2}^{+1}$ ion
- c. Calculate the bond order for the $\operatorname{Be_2}^{+1}$ ion.

<u>H</u> .	<u>0</u>	(eV is an electron-volt, a unit of energy)
1s = 13.6 eV	1s = 538.3 eV	
	2s = 28.7 eV	
	2p = 13.6 eV	

[I am getting you started by setting up the diagram]

BONUS: Explain what the HOMO-LUMO gap is and the significance of this gap.