Advanced Chem. Amino Acids & pH

Name:

1. A solution has a hydroxide-ion concentration of 1.5×10^{-5} M. (a) What is the concentration of the hydronium ions in this solution? (b) What is the pH of this solution? (c) Is the solution acidic, basic, or neutral?

- 2. Calculate the [H+] for a solution with a pOH of 4.75
- 3. Calculate the pH of a 0.125 M HNO₃ solution.
- 4. Calculate the percentage of benzoic acid ionized in a 0.020 M benzoic acid solution. K_a is 6.6×10^{-5} for benzoic acid.
- 5. Calculate the pH for a 0.015 M acetic acid solution. The K_a is 1.8 x $10^{\text{-5}}$ for acetic acid.
- 6. Citric acid, a tricarboxylic acid important in intermediary metabolism, can be symbolized as H_3A . Its dissociation reactions are

If the total concentration of the acid and its anion forms is 0.02 M, what are the individual concentrations of H_3A , H_2A^- , HA^{-2} and A^{-3} at pH 5.2?

- 7. The Ka for formic acid is 1.78×10^{-4} .
 - a. What is the pH of a 0.1 M solution of formic acid
 - b. 150 mL of 0.1 M NaOH is added to 200 mL of 0.1 M formic acid, and water is added to give a final volume of 1L. What is the pH of the final solution?
- 8. What concentrations of acetic acid and sodium acetate are required to prepare a buffer solution with a pH of 4.60? Ka is 1.8×10^{-5} for acetic acid