Student's t-test
We use this test for comparing the means of two samples (or treatments), even if they have different numbers of replicates. In simple terms, the t-test compares the actual difference between two means in relation to the variation in the data (expressed as the standard deviation of the difference between the means). 

Procedure
First, we will see how to do this test using "pencil and paper" (with a calculator to help with the calculations). Then we can see how the same test can be done in a spreadsheet package (Microsoft 'Excel')

1. We need to construct a null hypothesis - an expectation - which the experiment was designed to test. For example:

· If we are analyzing the heights of pine trees growing in two different locations, a suitable null hypothesis would be that there is no difference in height between the two locations. The student's t-test will tell us if the data are consistent with this or depart significantly from this expectation. [NB: the null hypothesis is simply something to test against. We might well expect a difference between trees growing in a cold, windy location and those in a warm, protected location, but it would be difficult to predict the scale of that difference - twice as high? three times as high? So it is sensible to have a null hypothesis of "no difference" and then to see if the data depart from this. 

2. List the data for sample (or treatment) 1.

3. List the data for sample (or treatment) 2.

4. Record the number (n) of replicates for each sample (the number of replicates for sample 1 being termed n1 and the number for sample 2 being termed n2)

5. Calculate mean of each sample (
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1 and 2).

6. Calculate  2 for each sample; call these  12 and  22 [Note that actually we are using S2 as an estimate of  2 in each case]

5. Calculate the variance of the difference between the two means (d2) as follows
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6. Calculate d (the square root of d2)

7. Calculate the t value as follows:

[image: image3.png]



(when doing this, transpose [image: image4.png]
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1 so that you always get a positive value)

8. Enter the t-table at (n1 + n2 -2) degrees of freedom; choose the level of significance required (normally p = 0.05) and read the tabulated t value.

9. If the calculated t value exceeds the tabulated value we say that the means are significantly different at that level of probability.

10. A significant difference at p = 0.05 means that if the null hypothesis were correct (i.e. the samples or treatments do not differ) then we would expect to get a t value as great as this on less than 5% of occasions. So we can be reasonably confident that the samples/treatments do differ from one another, but we still have nearly a 5% chance of being wrong in reaching this conclusion. 

Now compare your calculated t value with tabulated values for higher levels of significance (e.g. p = 0.01). These levels tell us the probability of our conclusion being correct. For example, if our calculated t value exceeds the tabulated value for p = 0.01, then there is a 99% chance of the means being significantly different (and a 99.9% chance if the calculated t value exceeds the tabulated value for p = 0.001). By convention, we say that a difference between means at the 95% level is "significant", a difference at 99% level is "highly significant" and a difference at 99.9% level is "very highly significant". 

What does this mean in "real" terms? Statistical tests allow us to make statements with a degree of precision, but cannot actually prove or disprove anything. A significant result at the 95% probability level tells us that our data are good enough to support a conclusion with 95% confidence (but there is a 1 in 20 chance of being wrong). In biological work we accept this level of significance as being reasonable.

Student's t-test: a worked example
Suppose that we measured the biomass (milligrams) produced by bacterium A and bacterium B, in shake flasks containing glucose as substrate. We had 4 replicate flasks of each bacterium. 

	 
	Bacterium A
	Bacterium B
	 

	Replicate 1
	520
	230
	 

	Replicate 2
	460
	270
	 

	Replicate 3
	500
	250
	 

	Replicate 4
	470
	280
	 

	 x
	1950
	1030
	Total (= sum of the 4 replicate values)

	n
	4
	4
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	487.5 
	257.5
	Mean (= total / n)

	 x2 
	952900 
	266700
	Sum of the squares of each replicate value

	 x)2 
	3802500
	1060900
	Square of the total ( x). It is not the same as x2
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	950625 
	265225
	 

	d2
	2275 
	1475
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	 2 
	758.3 
	491.7
	 2 = d2 / (n-1)
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= 189.6 + 122.9
= 312.5
	
d2 is the variance of the difference between the means

	d 
	= 17.68
	� d2 (the standard deviation of the difference between the means)
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	= 230/17.68 = 13.0


Entering a t table at 6 degrees of freedom (3 for n1 + 3 for n2) we find a tabulated t value of 2.45 (p = 0.05) going up to a tabulated value of 5.96 (p = 0.001). Our calculated t value exceeds these, so the difference between our means is very highly significant. Clearly, bacterium A produces significantly more biomass when grown on glucose than does bacterium B.

[Note that all the time-consuming calculations above can be done on a calculator with memory and statistics functions. Guidance on this can be found in your calculator's instruction booklet. Note also that this test and others can be run on computer packages. Below is a print-out from a package in Microsoft "Excel"]

Student's t-test: the worked example using "Excel" (Microsoft) spreadsheet
[NB: If you cannot find "Data analysis" on Excel then do into "Help" and find "statistical analysis" in the Help index. Different versions of Excel have slightly different commands, so you may not find the following section to be identical to the one you are using.]

The screen for "Excel" (not shown here) has cells arranged in columns A-F... and rows 1-10... For the print-out below, row 1 was used for headings and column A for replicate numbers. The data for Bacterium A were entered in cells B2,3,4,5 and data for Bacterium B in cells C2,3,4,5 of the spreadsheet. From the Tools option at the top of the screen, I selected Data analysis. This displays Analysis options and from the drop-down menu I selected t-test: Two-sample assuming equal variances. Then click OK and enter cells B2-5 for Variable range 1, cells C2-5 for Variable range 2, and a free cell (e.g. A7) for output range (choose the top-left cell of the area where you want the results of the analysis to be displayed). Then click OK and the printout appears.

	Replicate
	Bacterium A
	Bacterium B

	1
	520
	230

	2
	460
	270

	3
	500
	250

	4
	470
	280

	 
	 
	 

	t-Test: Two-Sample Assuming Equal Variances

	 
	Bacterium A
	Bacterium B

	Mean
	487.5
	257.5

	Variance
	758.3333
	491.6667

	Observations
	4
	4

	Pooled Variance
	625
	 

	Hypothesized Mean Difference
	0
	(The test will "ask" what is the probability of obtaining our given results by chance if there is no difference between the population means?)

	df
	6
	 

	t Stat
	13.01076
	(This shows the t value calculated from the data)

	P(T<=t) one-tail
	6.35E-06
	 

	t Critical one-tail
	1.943181
	 

	P(T<=t) two-tail
	1.27E-05
	(This shows the probability of getting our calculated t value by chance alone. That probability is extremely low, so the means are significantly different)

	t Critical two-tail
	2.446914
	(This shows the t value that we would need to exceed in order for the difference between the means to be significant at the 5% level)


We are given the column means, the pooled variance, the number of observations (n), the null hypothesis (that there is no difference between the population means), the degrees of freedom, the calculated t value, and four other entries. The first two of these refer to a one-tailed t-test (i.e. if we wish to test only that one particular mean is larger (or smaller) than the other. The final two entries refer to a two-tailed test, where we do not specify the "direction" of the test. For most purposes, we use a two-tailed test. In each case we are shown the probability that our calculated t-value is equal to or less than the "tabulated" t-value (shown as "Critical t"). Note that the calculated t-value (13.0) vastly exceeds the critical t-value (two-tailed); the means for the bacteria are significantly different at p = 1.27 x 10-5. In other words, there is a probability of about 1 in 100,000 that we would get our observed difference between the means by chance alone. 

The analysis for a t-test always pools the variances and, strictly speaking, it is only valid if the variances of the two treatments are similar. In the analysis above we could have selected the option "t-test: Two-sample assuming unequal variances". This would have given us the same result from our particular set of data but would have shown their separate variances as 758.33 for bacterium A and 491.67 for bacterium B.

For interest, let us ask if these variances are different in statistical terms. There is a simple test for this: divide the larger variance by the smaller (758.33 / 491.67 = 1.54) and compare this variance ratio with a value from a table of ‘F’ (variance ratio) for p = 0.05. For 2 treatments there is one degree of freedom between treatments (shown as n1 in the table) and 6 df within treatments (3 for each treatment), shown as n2 in the table. The tabulated F value is 6.0. Our variance ratio (1.54) is less than this, so our variances do not differ significantly. Our t-test was valid.

Student's t-test: deciphering the data in publications
Here are some results taken randomly from a scientific paper. Look at any scientific journal and you will find something similar to this:

Intracellular water volume for Streptococcus mutans;  l (mg dry wt.)-1
	pH 7.0 
	2.49 [image: image13.png]


0.06

	pH 5.5 
	2.62 [image: image14.png]


0.05

	 
	(means [image: image15.png]


SE; n = 6)


Note that the authors give us all the information that we need to test for significance. They tell us that the values are means of 6 replicates for each pH level, with the standard errors of those means.

If we go back to Descriptive Statistics, we will see that a standard error (n ) for a mean is calculated from the standard deviation  as follows: n =  / � n.

If we square  / � n, we get  / n.

Now, if we go back to one of the steps in the t-test, we see that we calculate:
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In this step we add the separate values of /n for each mean.

In other words, to do a t test on the published data, all we need do is to square the standard errors. We will do it now:

	 
	pH 7.0
	pH 5.5

	Mean [image: image17.png]


SE
	2.41  0.06
	2.62  0.05

	n
	6
	6

	SE2 (= /n)
	0.0036
	0.0025
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	= 0.0036 + 0.0025 = 0.0061

	d 
	= 0.0061)^1/2 = 0.0781
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	(2.62 - 2.41)/0.0781 = 2.689

	The critical t value (p = 0.05) for 10 degrees of freedom (n1 + n2 - 2) is 2.23. The calculated value exceeds this. There is less than a 5% probability of getting a value as high as this by chance alone. So we can be reasonably confident that pH does affect the intracellular water volume of the bacterium. 


 

 

Paired-samples test
Use this test as an alternative to the t-test, for cases where data can be paired to reduce incidental variation - i.e. variation that you expect to be present but that is irrelevant to the hypothesis you want to test. 

As background, let us consider exactly what we do in a conventional t-test to compare two samples. We compare the size of the difference between two means in relation to the amount of inherent variability (the random error, not related to treatment differences) in the data. If the random error is large then we are unlikely to find a significant difference between means unless this difference is also very large.

Consider the data in the table below, which shows the number of years' remission from symptoms (of cancer, AIDS, etc.) in two groups of patients: group A who received a new drug and group B who received a placebo (the controls). There were10 patients in each group, and we will first analyse the data by conventional t-test (see Student's t-test if you are not familiar with this). 

	Patient
	Drug
	Placebo

	1
	7
	4

	2
	5
	3

	3
	2
	1

	4
	8
	6

	5
	3
	2

	6
	4
	4

	7
	10
	9

	8
	7
	5

	9
	4
	3

	10
	9
	8

	 
	 
	 

	 x
	59
	45

	n
	10
	10
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	5.9
	4.5

	 x2
	413
	261

	( x)2 / n
	348
	203
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	65
	58

	 2
	7.22
	6.44
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	= 1.37

	d
	= 1.17
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	= 0.67
	 


Clearly, there is no significant difference between the means. [The smallest tabulated t value for significant difference at p = 0.05 is 1.96.] 

But drug trials are never done as randomly as this. Instead, the patients are matched as nearly as possible to exclude the effects of extraneous variation. For example, patient 1 in each group (drug or placebo) might be a Caucasian male aged 20-25; patient 2 in each group might be an Asian female aged 40-50, and so on. There is every reason to suspect that age, sex, social factors etc. could influence the course of a disease, and it would be foolish not to exclude this variation if the purpose of the trial is to see if the drug actually has an overall effect. In other words, we are not dealing with random groups but with purposefully paired observations. (The same would be true if, for example, we wanted to test effects of a fungicide against a disease on 10 farms, or to test whether a range of different bacteria are sensitive to an antibiotic, etc.).

Now we will analyze the data as paired samples.
Procedure (see worked example later)

1. Subtract each control value from the corresponding treatment value and call the difference z. (NB Always subtract in the same "direction", recording negative values where they occur)

2. Calculate  z, [image: image25.png]


,  z2 and ( z)2 /n , where "n" is the number of pairs (z values)

3. Construct a null hypothesis. In this case it would be appropriate to "expect" no difference between the groups (drug treatment versus controls). If this were true then the observed values of z would have a mean close to zero, with variation about this mean.

4. Calculate:
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5. Calculate:
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6. Square root this to find d then calculate:
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7. Find t from the equation:
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8. Consult a t table at n-1 degrees of freedom, where n is the number of pairs (number of z values). The tabulated t value for 9 df is 2.26 (p = 0.05)

In our example the calculated t value is 5.24, which is very highly significant - it exceeds the t value for probability (p) of 0.001. In other words, we would expect such a result to occur by chance only once in a thousand times. So the drug is effective: we see below that it gives remission of symptoms for 1.4 0.266 years (this value is the mean [image: image30.png]


standard error of the mean). The confidence limits are 1.4  0.6 years (mean  t.n).

	Patient
	Drug
	Placebo
	Difference (z)

	1
	7
	4
	3

	2
	5
	3
	2

	3
	2
	1
	1

	4
	8
	6
	2

	5
	3
	2
	1

	6
	4
	4
	0

	7
	10
	9
	1

	8
	7
	5
	2

	9
	4
	3
	1

	10
	9
	8
	1

	 
	 
	 
	 

	 z
	 
	 
	14

	n
	 
	 
	10
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	1.4

	 z2
	 
	 
	26

	( z)2 / n
	 
	 
	19.6
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	6.4

	 d2
	 
	 
	0.71

	 d
	 
	 
	0.84

	 n
	 
	 
	0.267


t = 1.4/0.267 = 5.24

It is instructive to consider what we have done in this analysis. We calculated the mean difference between the pairs of patients (treatments), calculated the standard error of this mean difference and tested it to see if it is significantly different from zero (no difference). The following diagram should make this clear. 

[image: image33.png]95% confidence limits
£.Cu= +0.6 years

0

i t

Mean difference 14yeass
No difference R




Paired-samples t-test: print-out from "Excel".
The example above was run on "Excel", as before (see Student's t-test) but we select t-test: paired two sample for means from the analysis tools package, click OK, select the whole data set (cells B2-C11) for Input variable range and a clear cell for Output range. See Student's t-test for explanation of other relevant entries in the print-out. [The calculated t (5.25) differs slightly from the worked example (5.24) on the previous page because the computer did not round up the decimal points during calculations] 

	Patient
	Drug
	Placebo

	1
	7
	4

	2
	5
	3

	3
	2
	1

	4
	8
	6

	5
	3
	2

	6
	4
	4

	7
	10
	9

	8
	7
	5

	9
	4
	3

	10
	9
	8

	 
	 
	 

	t-Test: Paired Two Sample for Means
	Variable 1
	Variable 2

	Mean
	5.9
	4.5

	Variance
	7.211111
	6.5

	Observations
	10
	10

	Pearson Correlation
	0.949414
	 

	Hypothesized Mean Difference
	0
	 

	df
	9
	 

	t Stat
	5.25
	 

	P(T<=t) one-tail
	0.000264
	 

	t Critical one-tail
	1.833114
	 

	P(T<=t) two-tail
	0.000528
	************

	t Critical two-tail
	2.262159
	 


******** Note that the two-tailed t-test shows the drug and placebo to be significantly different at p = 0.0005 (probability of 5 in 10,000 that we would get this result by chance alone). But in this case we would be justified in using a one-tailed test (P = 0.00026) because we are testing whether the mean difference (1.4 years) is significantly greater than zero. Look at the ‘critical t’ for a one-tailed test in the printout. This is the value given for p = 0.1 in a t-table (because we are testing only for a difference in one direction - above zero - so we can double the normal probability of 0.05). We should have used this value, not the value for p = 0.05 in our testing for significance.

Student's t test 

Note 1: A difference between two means is significant (at the given probability level) if the calculated t value is greater than the value given in this table. A probability of p = 0.05 (95% probability of making a correct statement) is usually acceptable for biological work, but p = 0.1 can be used for a "one-tailed" t-test. 

Note 2: When comparing two means, the number of degrees of freedom is (n1 + n2)-2, where n1 is the number of replicates of treatment 1, and n2 is the number of replicates of treatment 2.

Note 3: This table does not show all degrees of freedom. If you want a value between, say 30 and 40, then use the value for 30 df.

	Degrees of Freedom 
	Probability, p

	 
	0.1
	0.05
	0.01
	0.001

	1
	6.31
	12.71
	63.66
	636.62

	2
	2.92
	4.30
	9.93
	31.60

	3
	2.35
	3.18
	5.84
	12.92

	4
	2.13
	2.78
	4.60
	8.61

	5
	2.02
	2.57
	4.03
	6.87

	6
	1.94
	2.45
	3.71
	5.96

	7
	1.89
	2.37
	3.50
	5.41

	8
	1.86
	2.31
	3.36
	5.04

	9
	1.83
	2.26
	3.25
	4.78

	10
	1.81
	2.23
	3.17
	4.59

	11
	1.80
	2.20
	3.11
	4.44

	12
	1.78
	2.18
	3.06
	4.32

	13
	1.77
	2.16
	3.01
	4.22

	14
	1.76
	2.14
	2.98
	4.14

	15
	1.75
	2.13
	2.95
	4.07

	16
	1.75
	2.12
	2.92
	4.02

	17
	1.74
	2.11
	2.90
	3.97

	18
	1.73
	2.10
	2.88
	3.92

	19
	1.73
	2.09
	2.86
	3.88

	20
	1.72
	2.09
	2.85
	3.85

	21
	1.72
	2.08
	2.83
	3.82

	22
	1.72
	2.07
	2.82
	3.79

	23
	1.71
	2.07
	2.82
	3.77

	24
	1.71
	2.06
	2.80
	3.75

	25
	1.71
	2.06
	2.79
	3.73

	26
	1.71
	2.06
	2.78
	3.71

	27
	1.70
	2.05
	2.77
	3.69

	28
	1.70
	2.05
	2.76
	3.67

	29
	1.70
	2.05
	2.76
	3.66

	30
	1.70
	2.04
	2.75
	3.65

	40
	1.68
	2.02
	2.70
	3.55

	60
	1.67
	2.00
	2.66
	3.46

	120
	1.66
	1.98
	2.62
	3.37

	�
	1.65
	1.96
	2.58
	3.29


