The Properties of Water |
|||||||||||||||||||||||||||||||||
Grade Level |
Prospective and Practicing K-8 Teachers; may be adapted for
use in elementary classes
|
||||||||||||||||||||||||||||||||
Time
|
Exercises 1-4 take approximately 2 hours.
Water
|
||||||||||||||||||||||||||||||||
To Ponder
|
1. | How does water rise from the roots of a redwood tree to the very top? | |||||||||||||||||||||||||||||||
2. | How do insects walk on water? | ||||||||||||||||||||||||||||||||
3. | Why does ice![]() |
||||||||||||||||||||||||||||||||
4. | Why do people become seriously ill, or die, if they go without
liquid
![]() |
||||||||||||||||||||||||||||||||
5. | How would life in a lake be affected if ice sank and lakes froze from
the bottom up?
|
||||||||||||||||||||||||||||||||
In this first lab, we will investigate the properties of
water in an attempt to understand how water behaves in relation to both our
bodies and the environment. Through a concise set of experiments, the unique
properties of water and its consequent importance to living things will
become apparent.
|
|||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Supplies
|
Figure 1. Supplies
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Objectives
|
Once you have completed this exercise you should be able to: | ||||||||||||||||||||||||||||||||
1. | Describe the
polarity
![]() |
||||||||||||||||||||||||||||||||
2. | Explain why water climbs the inside of a thin glass capillary but not a thin plastic capillary. | ||||||||||||||||||||||||||||||||
3. | Explain why water climbs a paper strip. | ||||||||||||||||||||||||||||||||
4. | Describe a system whereby the components of a water-based substance might be separated and discuss how this separation occurs. | ||||||||||||||||||||||||||||||||
5. | Explain why oil and water don't mix. | ||||||||||||||||||||||||||||||||
6. | Predict whether a substance, based on its
hydrophilic
![]()
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Background
|
Water covers about three fourths of the surface of the
earth? It is ubiquitous. It is also one of the simplest yet most important
molecules in living systems. It makes up from 50 to 95 percent of the weight
of living organisms. The cytoplasm of a cell is a water-based solution that
contains a variety of ions, salts, and molecules which make life 'happen.'
Water is literally involved in every facet of life.
Figure 2. Polarity of Water Molecule The simplicity of the water molecule belies the complexity of its
properties. Based on its small size and light weight, one can predict how it
should behave, yet it remains
liquid at a much higher temperatures than expected. It also
boils Each molecule of water is made up of two atoms of hydrogen connected to one atom of oxygen, as shown below. This is summarized in the familiar formula, H2O.
Figure 3. Hydrogen Bonding in Water
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Powerful Idea
|
Atoms are most stable when they have a particular
configuration of their outer shells, a concept which will be discussed in
future labs. These configurations explain why hydrogen in water will take on
a partial positive charge and why oxygen will take on a
partial negative charge. These partial charges cause water
molecules to 'stick' to each other like magnets. The 'stickiness' in
this particular case is due to 'hydrogen
bonding'![]()
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Exercise 1 |
Surface Tension & Adhesion |
||||||||||||||||||||||||||||||||
1a | Drop Behavior - Water on Penny | ||||||||||||||||||||||||||||||||
To Do | 1. | Obtain a medicine dropper and a small (10 ml) graduated cylinder. Make sure the dropper is clean. | |||||||||||||||||||||||||||||||
2. | Drop water into the graduated cylinder with the dropper, counting each drop. | ||||||||||||||||||||||||||||||||
3. | How many drops, of the size produced by your medicine dropper, are in each cubic centimeter (cc) of water? (1 cubic centimeter = 1 milliliter)? __________ drops | ||||||||||||||||||||||||||||||||
Data Collection |
4. | Conversely, how much water is in each drop? (divide 1cc by the number of drops) __________ cc. per drop, average. | |||||||||||||||||||||||||||||||
5. | Now, let's see how many drops of water you can you place on the surface of a penny before it overflows. | ||||||||||||||||||||||||||||||||
Data Collection |
6. | How many drops do you predict?
Table 1. Number of Drops Predicted
|
|||||||||||||||||||||||||||||||
To Do | 7. | Drop water from the dropper onto a penny, keeping careful count of each
drop. Draw a diagram below showing the shape of the water on the penny after
one drop, when the penny is about half full, and just before it overflows.
|
|||||||||||||||||||||||||||||||
Data Collection |
Figure 4. Drawing of Drops
|
||||||||||||||||||||||||||||||||
Results | 8. | How many drops were you able to place on the surface of the penny before it overflowed? __________ drops | |||||||||||||||||||||||||||||||
Interpret | 9. | If the number of drops is very different from your prediction, explain
what accounts for the difference.
|
|||||||||||||||||||||||||||||||
10. | Explain your results in terms of
cohesion
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
1b | Effects of Detergent | ||||||||||||||||||||||||||||||||
To Do | 1. | With your finger, spread one small drop of detergent on the surface of a dry penny. | |||||||||||||||||||||||||||||||
Predict | 2. | How many drops do you think this penny will hold after being smeared
with
detergent, more, less, or the same as before? Why?
|
|||||||||||||||||||||||||||||||
3. | Specifically, how many drops do you think it will hold?
Table 2. Prediction of Number of Drops of Water on a Penny with Detergent
|
||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
To Do | 4. | Using the same dropper as before, add drops of water to the penny
surface. Keep careful count of the number of drops, and draw the water on
the penny after one drop, about half full, and just before overflowing.
|
|||||||||||||||||||||||||||||||
Figure 5. Drawing
of Drops on a Penny with Detergent
|
|||||||||||||||||||||||||||||||||
Results | 5. | How many drops were you able to place on the penny before it overflowed this time? __________ drops | |||||||||||||||||||||||||||||||
Question | 6. | Did the
detergent make a difference? Describe the effect of the
detergent.
|
|||||||||||||||||||||||||||||||
7. | What does the
detergent do to have this effect on water?
|
||||||||||||||||||||||||||||||||
Interpret | 8. | Explain how
detergents act as cleaning agents, considering the
cohesion among water molecules and the affects of
amphipathic molecules![]()
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
1c | Drop Shape on Glass and Wax Paper | ||||||||||||||||||||||||||||||||
Question | 1. | What will be the shape of a drop of water on (a) a piece of wax paper
and (b) a glass slide. Draw the shape of the drop you expect on each
surface:
|
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
2. | Why did you predict as you did? What assumptions are guiding your
thinking?
|
||||||||||||||||||||||||||||||||
To Do | 3. | Perform the experiment. Place several drops of water on each surface and
draw the results below.
|
|||||||||||||||||||||||||||||||
Interpret |
|
||||||||||||||||||||||||||||||||
4. | Compare your predictions with your observations and explain.
|
||||||||||||||||||||||||||||||||
5. | Can you explain the differences in drop behavior in terms of
adhesion![]()
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Exercise 2 |
The Climbing Property of Water |
||||||||||||||||||||||||||||||||
Background | 1. | Water moves to the tops of tall trees due to
capillary action![]() ![]() |
|||||||||||||||||||||||||||||||
Predict | 2. | How fast do you think water would climb a strip of absorbent paper about
one-half inch wide? about one inch per ____________________ (time) |
|||||||||||||||||||||||||||||||
To Do | 3. | Obtain a 50 ml graduated cylinder, and tear off a strip of
chromatography paper that is just long enough to hang over the side of the
cylinder (inside) and reach to the bottom.
|
|||||||||||||||||||||||||||||||
Figure 6. 50 ml
Graduated Cylinder with Chromatography Paper & Ink
|
|||||||||||||||||||||||||||||||||
To Do | 4. | Run the paper strip along the edge of a scissors to take the curl out of it. | |||||||||||||||||||||||||||||||
5. | Place a single small drop of ink from a black vis-a-vis pen on the
paper, about one inch from the bottom, and let it dry completely.
Figure 7. Ink on Chromatography Paper
|
||||||||||||||||||||||||||||||||
6. | Put 10 ml of water into the graduated cylinder and place the strip of
paper in the cylinder so that the bottom end is immersed in water and the
drop of ink is just above the surface of the water. Fold the paper over the
top side.
Figure 8. Close-up of Ink
|
||||||||||||||||||||||||||||||||
7. | Note the starting time below. | ||||||||||||||||||||||||||||||||
Data Collection |
8. | Watch and note the time at 5 minute intervals. When the water climbs to
the top of the paper, remove the paper from the water, and let it dry.
Table 3. Time of Water Climbing
|
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
To Do | 9. | How did the ink change? Glue the paper onto the page here, and label
each color on the strip.
|
|||||||||||||||||||||||||||||||
10. | How do you explain the results? Your explanation should involve
capillary action,
polar molecules and
hydrogen bonding.
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Exercise 3 |
Cohesion of Water |
||||||||||||||||||||||||||||||||
3a | Water & Oil | ||||||||||||||||||||||||||||||||
To Do | 1. | Put 8 ml of water into a 10 ml graduated cylinder. | |||||||||||||||||||||||||||||||
Predict | 2. | What will happen if you add cooking oil? (Predict by choosing a, b, c,
d, or e below) a. the oil will float on top of the water b. the oil will sink to the bottom of the water c. the oil will dissolve in the water d. the oil will become mixed up with the water e. other (what?)
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Oil is a
hydrophobic or 'water hating' molecule, so called because its
chemical structure does not allow the formation of hydrogen bonds.
Therefore, oil does not dissolve in water. When mixed, the two substances
form separate layers, and because oil is less dense, it sits on top of
water.
Figure 9. Water and Oil
|
|||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
3. | Gently add 2 ml of cooking oil by tilting the cylinder of water slightly and letting the oil run slowly down the inside of the cylinder. | ||||||||||||||||||||||||||||||||
Results | 4. | What happened?
|
|||||||||||||||||||||||||||||||
To Do | 5. | Save this graduated cylinder with its contents and get a clean 10 ml
cylinder for the next experiment.
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
3b | Oil & Water | ||||||||||||||||||||||||||||||||
To Do | 1. | Place 8 ml of cooking oil in a 10 ml graduated cylinder. | |||||||||||||||||||||||||||||||
Predict | 2. | What will happen when you add water? (Predict by choosing a, b, c, d, or
e below) a. the water will float on top of the oil b. the water will sink to the bottom of the oil c. the water will dissolve in the oil d. the water will become mixed up with the oil e. other (what?)
|
|||||||||||||||||||||||||||||||
To Do | 3. | Gently add 2 ml of water by tilting the cylinder of oil slightly and letting the water run slowly down the inside of the cylinder. | |||||||||||||||||||||||||||||||
Results | What happened?
|
||||||||||||||||||||||||||||||||
Question | 4. | Which is less dense (that is that has less weight per ml.), oil or water? ____________________ | |||||||||||||||||||||||||||||||
Interpret | 5. | This characteristic behavior of water and oil is of critical importance
for living things, determining many properties of the cell. Can you explain
how? Consider the picture that follows:
Figure 10. Enlargement of Cell Membrane to Show Phospholipid Bilayer.
|
|||||||||||||||||||||||||||||||
Question | 6. | What mechanism causes water molecules and oil molecules to separate from
one another? Your explanation should involve
polar and
non-polar molecules, the effects of
polarity on the molecular interactions, and
hydrogen bonding.
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
3c | Water, Oil, and Dye | ||||||||||||||||||||||||||||||||
Predict | 1. | Predict what will happen if you add a few drops of a water-soluble dye
solution to each of the above graduated cylinders containing water and oil.
Will the dye mix with the water, the oil, or both?
|
|||||||||||||||||||||||||||||||
To Do | 2. | Perform the experiment. Add a few drops of dye to each cylinder. Use a
glass stirring rod to penetrate the interface between each layer, giving the
dye access to both water and oil. How does the dye behave in each cylinder?
Does it diffuse into the oil? Into the water?
|
|||||||||||||||||||||||||||||||
Results | 3. | Compare your predictions and results. Explain any differences.
|
|||||||||||||||||||||||||||||||
To Do | 4. | Stir the contents of each cylinder with a stirring rod and then let it sit. | |||||||||||||||||||||||||||||||
Predict | 5. | Will the contents remain mixed? Why do you think so?
|
|||||||||||||||||||||||||||||||
Interpret | 6. | Observe what happens, compare with your prediction, and explain why it
happens. Your explanation should involve
polarity,
polar and
non-polar molecules, solution![]()
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
3d | Sheen | ||||||||||||||||||||||||||||||||
Predict | 1. | Take a clean beaker of water. Predict what will happen if you add one small drop of oil to the water using a medicine dropper. | |||||||||||||||||||||||||||||||
To Do | 2. | Do this experiment. Can you see the oil? Was your prediction correct?
Add more drops of oil if necessary to see it clearly. Describe. Your
description should focus on the separation of
polar and
non-polar layers and why that occurs.
|
|||||||||||||||||||||||||||||||
Predict | 3. | Predict what will happen if you add a drop of
detergent to the beaker.
|
|||||||||||||||||||||||||||||||
To Do | 4. | Now add a drop of detergent to the beaker of water with oil on top. Record your results | |||||||||||||||||||||||||||||||
Interpret | 5. | Compare the results with your prediction, and explain how the
detergent works in molecular terms. Your explanation should
focus on the ways in which
amphipathic molecules disrupt
cohesion.
|
|||||||||||||||||||||||||||||||
Interpret | 6. | Explain some of the consequences of oil spills in the sea. What effects
do they have on sea life and bird life, and what methods are used to 'clean
up' oil spills?
|
|||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Exercise 4 |
Class Summary |
||||||||||||||||||||||||||||||||
To Do | 1. | Summarize class results with respect to drops on a penny in the table
below.
|
|||||||||||||||||||||||||||||||
Table 4. Number of Drops on a Penny
|
|||||||||||||||||||||||||||||||||
Interpret | 2. | Explain the variation from group to group.
|
|||||||||||||||||||||||||||||||
3. | What general conclusions can you draw from the class data?
|
||||||||||||||||||||||||||||||||
4. | Summarize the most powerful ideas (1 to 5) you learned in this lab.
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Exercise 5 |
Organizing Your Knowledge |
||||||||||||||||||||||||||||||||
1. | Describe at least one observation you have made outside the laboratory
that illustrates each phenomenon below.
|
||||||||||||||||||||||||||||||||
a. |
Polarity
|
||||||||||||||||||||||||||||||||
b. |
Hydrogen bonds
|
||||||||||||||||||||||||||||||||
c. |
Cohesion
|
||||||||||||||||||||||||||||||||
d. |
Surface tension![]()
|
||||||||||||||||||||||||||||||||
e. |
Adhesion
|
||||||||||||||||||||||||||||||||
f. |
Capillary action
|
||||||||||||||||||||||||||||||||
g. |
Amphipathic
|
||||||||||||||||||||||||||||||||
h. | Dissolving
|
||||||||||||||||||||||||||||||||
i. |
Density
|
||||||||||||||||||||||||||||||||
2. | The table below summarizes nine phenomena associated with water across
the top and list the exercises we have performed down the side. For each
exercise, indicate which phenomena are illustrated.
|
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Supplementary
|
The following books support the California Department of
Education's Science Frameworks.
Watson, Lyall. (1988). The Water Planet. Beautifully illustrated, this book discusses the physics and chemistry. New York: Crown Publishers. Dorsey, N. Ernest. (1968). Properties of ordinary water substance in all its phases: water vapor, water & all the ices. New York: Hafner Publishing. Wetlist (http://www.uwin.siu.edu/WaterSites/index.html) - Comprehensive Water Topics |
||||||||||||||||||||||||||||||||
![]()
|
|||||||||||||||||||||||||||||||||
Related
|
Chapter 5: THE LIVING
ENVIRONMENT Section C: Cells Grade K-2 (Benchmark 2 of 2) Grade 3-5 (Benchmark 1 of 2) Grade 6-8 (Benchmark 4 of 4) About two thirds of the weight of cells is accounted for by water, which gives cells many of their properties. Chapter 8: THE DESIGNED WORLD Grade K-2 (Benchmark 1 of 4) |