Lab	Primary Learning Objective (LO)
1. Spectroscopy: What Is the Relationship Between the	The student can justify the selection of a particular type of
Concentration of a Solution and the Amount of Transmitted	spectroscopy to measure properties associated with vibrational or
Light Through the Solution?	electronic motions of molecules.
2. Spectrophotometry: <i>How Can Color Be Used to Determine</i>	The student can design and/or interpret the results of an experiment
the Mass Percent of Copper in Brass?	regarding the absorption of light to determine the concentration of an absorbing species in a solution.
3. Gravimetric Analysis: What Makes Hard Water Hard?	The student can design, and/or interpret data from, an experiment
5. Gravimetric Analysis: what makes hard water hard?	that uses gravimetric analysis to determine the concentration of an
	analyte in a solution.
4. Titration: <i>How Much Acid Is in Fruit Juice and Soft Drinks?</i>	The student can design, and/or interpret data from, an experiment
	that uses titration to determine the concentration of an analyte in a
	solution.
5. Chromatography: Sticky Question: How Do You Separate	The student can design and/or interpret the results of a separation
Molecules That Are Attracted to One Another?	experiment (filtration, paper chromatography, column
	chromatography, or distillation) in terms of the relative strength of
	interactions among and between the components.
6. Bonding in Solids: What's in That Bottle?	The student is able to design or evaluate a plan to collect and/or
	interpret data needed to deduce the type of bonding in a sample of a solid.
7. Stoichiometry: Using the Principle That Each Substance	The student is able to design a plan in order to collect data on the
Has Unique Properties to Purify a Mixture: An Experiment in	synthesis or decomposition of a compound to confirm the
Applying Green Chemistry to Purification	conservation of matter and the law of definite proportions.
8. Redox Titration: <i>How Can We Determine the Actual</i>	The student is able to design and/or interpret the results of an
Percentage of H2O2 in a Drugstore Bottle of Hydrogen	experiment involving a redox titration.
Peroxide?	
9. Physical and Chemical Changes: Can the Individual	The student is able to evaluate the classification of a process as a
Components of Quick Ache Relief Be Used to Resolve	physical change, chemical change, or ambiguous change based on
Consumer Complaints?	both macroscopic observations and the distinction between
	rearrangement of covalent interactions and noncovalent interactions.
10. Kinetics: Rate of Reaction: <i>How Long Will That Marble Statue Last?</i>	The student is able to design and/or interpret the results of an
	experiment regarding the factors (i.e., temperature, concentration,
11 Vinction: Data Laws: What Is the Data Law of the Fading	surface area) that may influence the rate of a reaction. The student is able to analyze concentration vs. time data to
11. Kinetics: Rate Laws: What Is the Rate Law of the Fading of Crystal Violet Using Beer's Law?	determine the rate law for a zeroth-, first-, or second-order reaction.
	In cases in which the concentration of any other reactants remains
	essentially constant during the course of the reaction, the order of a
	reaction with respect to a reactant concentration can be inferred from
	plots of the concentration of reactant versus time.
12. Calorimetry: The Hand Warmer Design Challenge: Where	The student is able to design and/or interpret the results of an
Does the Heat Come From?	experiment in which calorimetry is used to determine the change
	in enthalpy of a chemical process (heating/cooling, phase transition,
	or chemical reaction) at constant pressure
13. Equilibrium: Can We Make the Colors of the Rainbow?	The student is able to use LeChâtelier's principle to design a set of
An Application of Le Châtelier's Principle	conditions that will optimize a desired outcome, such as product
14. Acid-Base Titration: How Do the Structure and the Initial	yield. The student can interpret titration data for monoprotic or polyprotic
Concentration of an Acid and a Base Influence the pH of the	acids involving titration of a weak or strong acid by a strong base (or
Resultant Solution During a Titration?	a weak or strong base by a strong acid) to determine the
	concentration of the titrant and the pKa for a weak acid, or the pKb
	for a weak base.
15. Buffering Activity: To What Extent Do Common	The student can identify a solution as being a buffer solution and
Household Products Have Buffering Activity?	explain the buffer mechanism in terms of the reactions that would
	occur on addition of acid or base.
16. Buffer Design: The Preparation and Testing of an	The student can design a buffer solution with a target pH and buffer
Effective Buffer: How Do Components Influence a Buffer's pH	capacity by selecting an appropriate conjugate acid-base pair and
and Capacity?	estimating the concentrations needed to achieve the desired capacity.